INSTITUTION: Indiana University–Purdue University Indianapolis (IUPUI)

CAMPUS: Indianapolis

COLLEGE: Purdue School of Science

DEPARTMENT/SCHOOL: Mathematical Sciences

DEGREE PROGRAM TITLE: Ph.D. in Mathematical Sciences

SUGGESTED CIP CODE: 27.0101

PROJECTED DATE OF IMPLEMENTATION: January, 2016
NEW DEGREE PROGRAM PROPOSAL SIGNATURE PAGE

Degree Title: Ph.D. in Mathematical Sciences
Name of academic unit offering the new degree: Purdue School of Science, IUPUI

Include signatures from all involved programs:

Joseph Rosenblatt, Professor and Chair
Department of Mathematical Sciences, IUPUI

Date: 10/1/15

Simon Rhodes, Dean
Purdue School of Science, IUPUI

Date: 9/28/15

Janice Blum
Associate Vice Chancellor for Graduate Education, IUPUI

Date: 10/1/15

Approval Recommended by the Graduate Council

Date:

M.J.T. Smith
Dean of the Graduate School

Date:

Debasish (Deba) Dutta
Provost

Date:
Executive Summary for an Independent Ph.D. Program in the Mathematical Sciences on the Indiana University-Purdue University Indianapolis Campus in the Department of Mathematical Sciences

The Department of Mathematical Sciences at IUPUI is proposing the establishment of a site-approved, independent Ph.D. program in the Mathematical Sciences. The current Ph.D. program has operated successfully for many years under a Memorandum of Understanding with Purdue University West Lafayette (PUWL). The new program will complement the vigorous research program in the Department of Mathematical Sciences on the IUPUI campus and will strengthen the ability of the Department to compete nationally for the best faculty and students. The Department has strong research groups among its faculty in pure mathematics, applied mathematics, and statistics and biostatistics, that in a number of ways closely aligns it with the IUPUI campus emphasis on biomathematics and biomedical sciences, and with the IUPUI designation as the “Life and Health Sciences Campus” within the Indiana University System. Increasing the number of Ph.D. graduates is a central goal of the IUPUI strategic plan, adopted in 2013. There is also a clear alignment of this proposal with the State of Indiana’s economic development priorities related to the need for professionals trained in the mathematical sciences both as researchers and as teachers.

As stated above, the proposed program does not represent a new training program, but rather a new, independent status for an existing training program that has operated successfully for 22 years. Moreover, this program has operated with a considerable degree of autonomy for the last decade under the Memorandum of Understanding (MOU) between the Department of Mathematical Sciences at IUPUI and the Department of Mathematics at PUWL. Currently, students take all coursework and qualifying examination, Advanced Topics, and Preliminary Examinations in Indianapolis, and conduct their research with IUPUI faculty mentors and advisors. Furthermore, the current MOU has the admission, termination and Plan of Study decisions made by the Department of Mathematical Sciences at IUPUI. The proposed new program structure follows the current structure for graduate student education in the Department of Mathematical Sciences and the School of Science at IUPUI as a whole, using the academic standards of the Purdue University Graduate School. The proposal for an independent Ph.D. program in the mathematical sciences will allow the Ph.D. program in the Department of Mathematical Sciences at IUPUI to grow in ways that best support student success and allow it to be tailored appropriately over time to the particular research strengths of its faculty members.

Since this proposal is, in effect, a petition to rename and site-approve a 22-year ongoing activity, no new resources are needed to implement it: the faculty and staff necessary to conduct this degree program are already in place.
Program Description
Ph.D. in Mathematical Sciences
Indiana University–Purdue University Indianapolis (IUPUI)

1. Characteristics of the Program
 a. Campus Offering Program: Indiana University–Purdue University Indianapolis
 b. Scope of Delivery (Specific Sites or Statewide): IUPUI
 c. Mode of Delivery (Classroom, Blended or Online): Classroom, independent study
 d. Other Delivery Aspects (Co-ops, Internships, Clinical, Practica, etc.): Participation in research
 e. Academic Unit(s) Offering Program: IUPUI School of Science, Purdue University Graduate School

2. Rationale for Program
 a. Institutional Rationale (Alignment with Institutional Mission and Strengths)

 This proposal is to establish a site-approved, independent Ph.D. program in the Department of Mathematical Sciences at IUPUI. The Department of Mathematical Sciences at IUPUI has a successful track record starting 22 years ago in training doctoral students under the aegis of the Department of Mathematics at Purdue University West Lafayette (PUWL). The new program will complement the vigorous research program in the Department of Mathematical Sciences on the IUPUI campus and will strengthen the ability of the Department to compete nationally for the best faculty and students. The Department has strong research groups among its faculty in pure mathematics, applied mathematics, and statistics and biostatistics, that in a number of ways closely aligns it with the IUPUI campus emphasis on biomathematics and biomedical sciences, and with the IUPUI designation as the “Life and Health Sciences Campus” within the Indiana University System. Increasing the number of Ph.D. graduates is a central goal of the IUPUI strategic plan, adopted in 2013. There is also a clear alignment of this proposal with the State of Indiana’s economic development priorities related to the need for professionals trained in the mathematical sciences both as researchers and as teachers.

 The program serves several critical needs:

 (1) supporting and enhancing the research mission of the Department of Mathematical Sciences,

 (2) increasing the profile of the Department nationally,

 (3) enhancing faculty recruitment,

 (4) creating an environment in which undergraduate students have an opportunity to be immersed in cutting-edge research in the mathematical sciences, and
producing doctoral graduates with rigorous classroom training in contemporary mathematical sciences and definitive experience in research that advances mathematical science (particularly in areas relevant to mathematical physics, dynamical systems, applied mathematics focusing on biomathematics modeling, and statistical and biostatistics methods in the physical and life sciences).

The Department of Mathematical Sciences at IUPUI has developed research strengths as a consequence of its location on the IUPUI campus and the opportunities afforded by collaborations with the IU School of Medicine, other departments in the School of Science, and local life sciences private sector enterprises (for example, Dow, Lilly, Roche, and Teledoc). Indeed, the Department of Mathematical Sciences at IUPUI not only has an excellent track record of national level funding from the National Science Foundation (NSF) (in pure mathematics, statistics, and applied mathematics) and now the Simons Foundation too, but has applied mathematics faculty who have obtained funding from the National Institutes of Health (NIH) through their work in neuroscience and biomathematics modeling.

The Department of Mathematical Sciences has a strong and talented faculty with research programs covering many important areas in pure and applied mathematics, as well as in statistics. Currently, these areas of strength include: Modern Analysis and Geometry, Dynamical Systems, Mathematical Physics, Applied and Computational Mathematics, Statistics and Biostatistics, and Mathematics Education. The diversity of the Department’s faculty research mirrors the intellectual trends of the mathematical sciences in a time of a burgeoning of applications in many areas of science, medical sciences, and business. Reflective of this, the Department hosts a number of research-related activities, such as seminars, colloquia and mini-conferences. In addition to the regular Friday Departmental Colloquiums, there are a number of other weekly seminars ongoing in the Department such as Modern Analysis and Geometry Seminar; Dynamical Systems Seminar; Mathematical Physics Seminar; Statistics Seminar; Operator Theory Seminar, Mathematical Neuroscience Seminar and Biomath Seminar. The Department also traditionally hosts the Fall Meeting of the Wabash Extramural Modern Analysis Seminar (September/October). These activities combined have helped create an intense research environment in the Department and allowed it to host over the recent years a large number of top research mathematicians with national and international reputations, of whom many are closely interacting with our faculty on research-related matters.

As stated above, the proposed program does not represent a new training program, but rather a new, independent status for an existing training program that has operated successfully for 22 years. Moreover, this program has operated with a considerable degree of autonomy for the last decade under the Memorandum of Understanding (MOU) between the Department of Mathematical Sciences at IUPUI and the Department of Mathematics at PUWL. Currently, students take all coursework and qualifying examination, Advanced Topics, and Preliminary Examinations in Indianapolis, and conduct their research with IUPUI faculty mentors and advisors. Furthermore, the current MOU has the admission, termination and Plan of Study decisions being made by the Department of Mathematical Sciences at IUPUI. The
The proposed new program structure follows the current structure for graduate student education in the Department of Mathematical Sciences and the School of Science at IUPUI as a whole, using the academic standards of the Purdue University Graduate School. The proposal for an independent Ph.D. program in the mathematical sciences will allow the Ph.D. program in the Department of Mathematical Sciences at IUPUI to grow in ways that best support student success and allow it to be tailored appropriately over time to the particular research strengths of its faculty members.

b. State Rationale “Reaching Higher, Achieving More calls for institutions that advance the specific mission and strengths of each institution.”

The mission and vision statements of the IUPUI Campus are:

Indiana University–Purdue University Indianapolis (IUPUI), a partnership between Indiana and Purdue Universities, is Indiana’s urban research and academic health sciences campus.

IUPUI’s mission is to advance the state of Indiana and the intellectual growth of its citizens to the highest levels nationally and internationally through research and creative activity, teaching and learning, and civic engagement.

By offering a distinctive range of bachelor’s, master’s, professional, and Ph.D. degrees, IUPUI promotes the educational, cultural, and economic development of central Indiana and beyond through innovative collaborations, external partnerships, and a strong commitment to diversity.

Our vision: To be a leading urban research institution recognized for the success of its students, its advances in health and life sciences, and its intellectual, economic, and cultural contributions to the well-being of the citizens of Indianapolis, the state of Indiana, and beyond. Indianapolis, the state of Indiana, and beyond.

It should be clear that the Department of Mathematical Sciences at IUPUI Ph.D. program directly addresses multiple aspects of this mission and vision, including the development of research of all types (including research in the health and life sciences via the Applied Mathematics and Statistics programs in the Department). The Department fosters a research atmosphere that creates a distinctive range of doctoral degrees and the economic development of the central Indiana region. This proposal will advance IUPUI campus goals of increasing the number of doctoral degree graduates, strengthening the connections of mathematical sciences with the physical and life sciences research at IUPUI, and forging partnerships with national and international research at a full range of academic and private sector institutions.

c. Evidence of Labor Market Need
 i. National State, or Regional Need.

 Employment demand for doctoral graduates in mathematical sciences is steady or increasing. The American Mathematical Society (AMS) releases an annual report on the demand for trained mathematicians. See
for a complete history and, in particular, for the most current report available online, see

For example, the following data is provided: In 2013-2014, the United States employed a total of 1,228 new mathematics Ph.D. graduates; data is then provided by Type of Employer: a) Ph.D. granting institutions 346 (28%) b) Business & Industry 325 (26%) c) Masters and Bachelors and 2-year Colleges 228 (19%), d) Other academic and research institutes 205 (17%), e) Government 64 (5%), f) Statistics and biostatistics 60 (5%). Note: f) represents the number of Ph.D.s in mathematics who take employment as statisticians or biostatisticians, but the percentage for this would be higher with Ph.D.s where there was an emphasis in statistics like some of the students earning Ph.D.s in the Department of Mathematical Sciences at IUPUI. In addition, information on salaries can be obtained at

For example, median salaries for new Ph.D.s in mathematics for 2013 are summarized as follows: for academic/teaching positions $53,000-$60,000 depending on the type of institution and whether it is 9/10/12 month salary, for government employment $87,000, and for private sector employment $100,000.

ii. Preparation for Graduate Programs or Other Benefits.

The Ph.D. is a terminal degree, but a large proportion of Ph.D. graduates in mathematical sciences will go on to postdoctoral training in their area of study and/or in related fields. There are many opportunities for graduates with a Ph.D. in mathematics, including the public sector (e.g., NSA and the Census Bureau, or other government agencies), the private sector (e.g., internet and communications companies like Google, finance in companies like Bank of America, actuarial science in companies like One America, risk analysis positions in banking firms, and investment companies like Renaissance Technologies). Some graduates will use their training in other careers entirely such as law and business and will seek advanced degrees in these areas.

iii. Summary of Indiana DWD and/or U.S. Department of Labor Data

Indiana Department of Workforce Development (DWD) data do not specifically address demand for doctoral graduates, but overall demand in the mathematical sciences in the state is strong. For example, DWD predicts growth in employment for postsecondary teachers to be up 18% in the next 10 years, for Ph.D. level computer and mathematical scientists to be up anywhere
from 25% to 35% in the next 10 years, for actuaries to be up 32% in the next 10 years, and financial analysis such as what mathematical scientists can do to be up 15% in the next 10 years. The state is unlikely to be able to achieve significant growth in high priority sectors such as the mathematical sciences without access to a pool of individuals trained to the doctoral level in mathematics and statistics. Overall demand for college graduates in these economic sectors will drive sustained demand by public and private institutions of higher education in the state for doctoral graduates to serve their instructional and research needs.

iv. National, State or Regional Studies

National reports such as ones provided by the AMS and the American Statistical Association (ASA) show a high proportion of doctoral degree graduates in the mathematical sciences are employed in research careers, either in academic institutions or in other settings (the public or the private sectors). The fraction of graduates not in the labor force remains very low. This is in the context of a significant increase in the number of Ph.D.’s granted in these fields over the last 20 years. Thus, the job market for graduates from this program is currently, and will remain, robust.

v. Surveys of Employers or Students and Analyses of Job Postings

The track record of IUPUI mathematical sciences Ph.D. graduates in advancing their careers is clear evidence of demand for the skills. This is documented in Appendix A. There is a high expectation that the current group of 40 Ph.D. students on support will have similar successes in their careers.

vi. Letters of Support

See Appendix D.

3. Costs of and Support for the Program

a. Costs

• Faculty and Staff

 The Department of Mathematical Sciences has 49 faculty members including the tenure track faculty, the specialized faculty, and the lecturers. There are also two academic advisors, an office manager, and two office staff. In particular, the Department has 32 tenure track faculty with regular appointments in the Purdue University Graduate School and who are currently able to serve on graduate committees and to mentor students. They will constitute the graduate faculty for the new program. No new faculty positions are required to establish the independent program.

• Facilities

 The program will be supported by teaching and research facilities that currently exist on the IUPUI campus. Besides office space for the faculty
members, there are four large rooms (three in the School of Science LD building) where the Ph.D. students have shared office space with individual desks and computer access.

- **Other Capital Costs (e.g., Equipment)**

 Student research will be supported by existing capital equipment (such as computers, copiers, etc.) in the Department of Mathematical Sciences and the School of Science, or by equipment purchased with funds secured by research grants.

b. **Support**

- **Nature of Support (New, Existing, or Reallocated)**

 Since this is a continuation of an ongoing program, only existing funding will be used.

- **Special Fees above Baseline Tuition**

 The Mathematical Sciences Ph.D. program will have the same tuition and fees as the other IUPUI School of Science graduate programs.

4. **Similar and Related Programs**

a. **List of Programs and Degrees Conferred**

- **Similar Programs at Other Institutions**

 There are currently three other mathematics Ph.D. programs in Indiana, besides the one at IUPUI, with the largest being at Indiana University Bloomington (IUB) and Purdue University West Lafayette (PUWL), the program through which we are now operating. There are Ph.D. programs at the University of Notre Dame in the Department of Mathematics and the Department of Applied and Computational Mathematics and Statistics. Each of these programs have a focus or flavor that makes them different in some ways to the others. The current program at IUPUI operated under the MOU with PUWL has a full range of possible Ph.D. work in the mathematical sciences: pure mathematics (including geometry, dynamical systems, and mathematical physics), applied mathematics (including neuroscience and biomathematics), statistics, and mathematical education. This allows Ph.D. students in the Department to work across lines of expertise rather easily because the relevant faculty experts are all in the same department.

 The inclusion of faculty members whose domain of excellence is pure mathematics, applied mathematics, statistics, and mathematical education in the Department of Mathematical Sciences at IUPUI makes it unique in Indiana. Students seeking a Ph.D. degree in Mathematical Sciences at IUPUI start by taking courses and qualifying examinations that generally prepare them for the degree, and then take courses and do research that is focused in one of the areas of specialization of pure mathematics, applied
mathematics, statistics, and mathematical education. This process is different at the other universities offering Ph.D. degrees in Indiana. At PUWL, there is a strong Department of Statistics which is separate from the Department of Mathematics, while at Indiana University the Department of Statistics is smaller and still relatively new. Notre Dame University is different in that there is a separate Department of Applied and Computational Science and Statistics. When seeking a Ph.D. at these schools, a student must be admitted to the appropriate department that fits their planned specialization within mathematical sciences. But at IUPUI, a student could start their Ph.D. work with a plan to study in one area and then easily switch to another area of specialization because the Ph.D. degree with specializations are all within the IUPUI Department of Mathematical Sciences.

Within each of the departments offering Ph.D. degrees in mathematics or the mathematical sciences in Indiana, there are many differences in faculty interests and strengths leading to a divergence in the type of research that Ph.D. students pursue in the dissertation phase of their Ph.D. degree work. The Department of Mathematical Sciences at IUPUI has faculty with extensive expertise in areas of pure mathematics, applied mathematics, statistics, and mathematical education. One of the unique strengths and a focus area of the IUPUI Department of Mathematical Sciences is on health data sciences/biostatistics and biomathematics modeling (e.g. in neurosciences and vascular studies); this specialization is facilitated by having the IU Schools of Health Sciences located on the IUPUI campus.

The Department of Mathematical Sciences at IUPUI organizes research into broad areas and then delineates subareas within those as follows:

- **Pure Mathematics**: including algebra, and number theory, dynamical systems, mathematical physics, modern analysis and geometry;
- **Applied and Computational Mathematics**: biomathematics modeling in neuroscience, vascular dynamics, complex non-linear dynamics in biological systems, (digital) signal processing, phase retrieval, and a variety of inverse problems in imaging sciences;
- **Statistics and Biostatistics**: applied probability, Bayesian statistics, biostatistics, design of experiments, empirical likelihood, high dimensional statistical inference, mathematical statistics, reliability theory, sequential analysis, spatial statistics, and time series; and
- **Mathematics Education**: STEM issues in middle and secondary schools, and STEM education at the university level.

What makes the mathematical sciences Ph.D. program at IUPUI unique and worthwhile is its strong connections with the medical and life sciences theme of the research being done at IUPUI, in part as a result of the presence of the IU Schools of Medicine, Dentistry, and Nursing on the IUPUI campus. The Department of Mathematical Sciences at IUPUI has a
long track record of extramural funding from the NSF, and in recent years, also from the Simons Foundation. Notably, a number of the Department’s faculty members are supported by the NIH because of their interdisciplinary work in applied mathematics with connections to the health and medical sciences.

- **Related Programs at the Proposing Institution**

 The most similar program at the proposing institution is the current Ph.D. program in Mathematical Sciences that operates under an MOU with PUWL. This proposed Ph.D. program will continue that successful Ph.D. program with minor modifications.

 b. List of Similar Programs Outside Indiana

 There are too many mathematical sciences Ph.D. programs to list in this proposal. There are programs at most research universities, since a doctoral program is an important complement to a high level of research activity. For example, the AMS lists the following:

 The doctorate-granting mathematics departments at **public institutions** are grouped as follows:

 - The **Public Large Group** consists of the 26 departments with the highest annual rate of Ph.D.s ranging between 7.0 and 24.2 per year.
 - The **Public Medium Group** consists of the 40 departments with annual rate of Ph.D.s ranging between 3.9 and 6.8 per year.
 - The **Public Small Group** consists of the remaining 64 departments.

 The doctorate-granting mathematics departments at **private institutions** are grouped as follows:

 - The **Private Large Group** consists of the 24 departments with the highest annual rate of Ph.D.s ranging between 3.9 and 19.8 per year.
 - The **Private Small Group** consists of the remaining 28 departments.

 - The doctorate-granting **Applied Mathematics Group** consists of 31 applied mathematics departments. The doctorate-granting **Statistics Group** consists of 58 statistics departments. The doctorate-granting **Biostatistics Group** consists of 44 biostatistics departments.

 c. Articulation of Associate/Baccalaureate Programs

 Not applicable.

 d. Collaboration with Similar or Related Programs on Campus

 As discussed in Section 4a above, we currently operate our Ph.D. program under a Memorandum of Understanding (updated in April 2015) with Purdue
University West Lafayette (PUWL). This provides a full range of possible Ph.D. work for our students in the mathematical sciences. We also have a collaborative arrangement with the BioStatistics Ph.D. program, now held in the School of Public Health. Our faculty mentor and advise several BioStatistics Ph.D. students each year. Additionally, several of our Applied Math faculty work closely with faculty and graduate students in the School of Medicine Neuroscience, Medical Imaging and Ophthalmology areas.

5. Quality and Other Aspects of the Program

a. Credit Hours Required/Time to Completion

- Credit hours required for the program and how long a full time student will need to complete the program.

Ph.D. students in the Department of Mathematical Sciences at IUPUI take their course work on the IUPUI campus. The minimum number of credits required to complete the Ph.D. degree is 90 credit hours, comprised of coursework and research hours (Math 69900) under the supervision of the student’s mentor. Students may choose to pursue a Ph.D. degree with a specialization in pure or applied mathematics, statistics or math education. For students directly admitted to the Ph.D. program, the total number of credit hours will typically comprise 90 hours of coursework (with up to 30 credit hours being applied from a M.S.) and a minimum of 18 credit hours of research.

Typically, graduate students enroll in nine credit hours of combined coursework and research each semester. The credit hour requirements for the Ph.D. can easily be completed in four years; accomplishing mandated research goals usually takes longer in the mathematical sciences, with five years being typical. Students may also transfer in up to 30 credit hours from a M.S. degree or up to 12 graduate non-degree credit hours toward the 90 credit hours of coursework required for the Ph.D. (contingent on faculty approval).

Sample Plans of Study are included as Appendix C.

b. Exceeding the Standard Expectations of Credit Hours

Not applicable.

c. Program Competencies or Learning Outcomes

- List the significant competencies or learning outcomes that students are expected to master.

Upon completion of the Ph.D. in Mathematical Sciences, students should be able to:
• Design and conduct well-conceived, significant research projects in a sub-discipline of mathematical sciences that can advance knowledge in the field.
• Critically analyze and evaluate ideas, information, or data created by themselves or others and make judgments about the quality and significance of these.
• Effectively communicate the results of research in written form to qualified individuals in the mathematical sciences via publications in the scientific literature.
• Write effective proposals to secure support for research projects in the mathematical sciences.
• Orally communicate research results to a professional audience and engage in dialogue with other researchers in the field.
• Demonstrate in-depth knowledge of scientific literature in the chosen field of inquiry and use this knowledge effectively to inform the selection of research questions and the approach to be taken.
• Conceive new ideas or new ways of understanding mathematical questions.
• Demonstrate an appreciation of ethical concerns in mathematical research and the importance of research integrity.

d. Assessment

Assessment of progress toward achieving the competencies expected of Ph.D. graduates will be assessed at multiple stages during students’ careers:

• Coursework is assessed through examination, oral presentation and written reports.
• Students are assessed on their knowledge in one of the sub-disciplines of biology with a written qualifying exam set by the graduate faculty and taken at the end of the first year.
• In a preliminary exam at the end of the second year, students present and defend a written proposal of the work planned for inclusion in the doctoral dissertation. The student’s advisory committee of four or more graduate faculty, including the research mentor, oversees the preliminary exam.
• Students meet at least annually with their advisory committee to review progress toward completion of the research that will be included in the dissertation.
• Students submit the final dissertation to the advisory committee for approval and are examined at an oral defense of their research by the advisory committee and the graduate faculty.

e. Licensure and Certification

Not applicable.
f. **Placement of Graduates**

Placement of graduates is indicated in the list of previous IUPUI Department of Mathematical Sciences Ph.D. students. Students have gone on to postdoctoral fellowships at prestigious universities and progressed to faculty positions in research institutions. Others have taken positions in the public or private sector. The employment profile of the Ph.D. graduates of the Department of Mathematical Sciences at IUPUI in many ways parallels the norms of the employment of Ph.D. graduates in the mathematical sciences in the United States as a whole. A list of former graduates is attached as Appendix A.

g. **Accreditation**

Accreditation is not available for Ph.D. programs in the mathematical sciences.

6. **Projected Headcount and FTE Enrollments and Degrees Conferred**

The Ph.D. program is projected to continue a steady growth consistent with the last five years. The intent will be to grow the Ph.D. program in the Department of Mathematical Sciences to be near to having 50 students total by the year 2020. Currently, there are 40 Ph.D. students in the program for fall 2015 (counting current students and new admissions). This planned growth will be coupled with a growth of the full-time tenure track faculty to 40, an increase by six positions with retirements and resignations taken into account. This will guarantee adequate capacity of a sufficient number of faculty mentors to support the larger Ph.D. program. Projections of growth past 2020 are dependent on the growth in the IUPUI overall student population and an increase in the Department of Mathematical Sciences tenure-track faculty lines. These two factors are difficult to predict at this time.

An aspect of the planning for the growth in the Ph.D. program is the balance of domestic versus international students. In AY 2014-2015, there were 31 full-time Ph.D. students with 25 being international and 6 being domestic (U.S. citizen and permanent resident). In fall 2015, there will be 39 full-time students, of whom 29 students are international and 10 are domestic. The emphasis will be placed of quality of students in the growth of the Ph.D. program to 50 students, but at the same time it will be a major goal to move the program to having a higher representation of domestic students, with parity being the target balance. The intent of this is to make the program better serve the needs of capacity for mathematical sciences graduate education in the U.S. for domestic students.

Here is a summary of what the balance of support for Ph.D. students has been over the last several years:
As a view of the planned growth of the Ph.D. program, see the table below showing the actual Ph.D. student enrollment numbers through 2015 (in black) and the projected enrollment numbers through 2020 (in red):

<table>
<thead>
<tr>
<th></th>
<th># Supported</th>
<th># Research Assistants</th>
<th>#Teaching Assistants</th>
<th>#Fellowships</th>
<th>Amount of Funding</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-2015</td>
<td>31</td>
<td>8</td>
<td>20</td>
<td>3</td>
<td>$580,000</td>
</tr>
<tr>
<td>2013-2014</td>
<td>31</td>
<td>6</td>
<td>23</td>
<td>2</td>
<td>$566,249</td>
</tr>
<tr>
<td>2012-2013</td>
<td>21</td>
<td>4</td>
<td>14</td>
<td>3</td>
<td>$385,750</td>
</tr>
</tbody>
</table>

Note: The current operating policy in the Department of Mathematical Sciences at IUPUI is that a typical Ph.D. student is admitted with a commitment for five years of support through a fellowship, a teaching assistantship (TA), or a research assistantship (RA) depending on available resources and the student’s academic achievements.

The present instructional capacity, in terms of the number of undergraduate courses and the number of undergraduate students, significantly exceeds what is necessary for there to be resources to support 12 additional graduate students using TA lines alone. In addition, there is a projection of growth in student enrollments at IUPUI in both the School of Science and the School of Engineering and Technology, and there is expected to continue to be high demand by undergraduate students in other Schools at IUPUI for mathematical science courses required for the various majors. Moreover, even now there is a need to regularly hire a number of part-time faculty each term to cover the instructional demand for mathematical sciences courses. Considering this alone, having additional graduate student TAs in place of some of these part-time faculty will allow for the support needed for the additional 12 graduate students planned in the total numbers of Ph.D. students over the next five years.

LIST OF APPENDICES:

Appendix A: Admission Requirements, Curriculum Requirements, Sample Curriculum and Existing Program Curriculum
Appendix B: Faculty: Areas of Specialization
Appendix C: History and Size of the IUPUI Mathematical Sciences Ph.D. Programs
Appendix D: Letters of Support
Appendix E: Headcounts and Cost Projections
Appendix A: Admission Requirements, Curriculum Requirements, Sample Curriculum and Existing Program Curriculum:

We invite applications from individuals who have earned a B.S. in Math with at least a 3.0 GPA, or those with a strong mathematics background in the following courses: linear algebra, complex analysis, abstract algebra, real analysis, numerical analysis, partial differential equations, ordinary differential equations, mathematical statistics and probability.

The Ph.D. program requires the completion of at least 90 credit hours, and up to 30 credit hours from an M.S. degree may be applied, with approval from faculty advisors.

- **Ph.D. Math Admissions Requirements:**
 1. **Official GRE general GRE test scores** are required for admission, with a GRE Math Subject test score being highly recommended.
 2. Applicants whose native language is not English must demonstrate their **English proficiency** with one of the following options:
 i) **Official TOEFL** score report that is no more than two years old with the following minimum scores:
 - 570 on the paper-based test
 - 230 on the computer-based test, or
 - 79 on the internet-based test, with sub-scores of:
 - Writing – 18
 - Speaking – 18
 - Listening – 14
 - Reading – 19
 ii) **Official IELTS** (International English Language Testing System) score of at least 6.5.
 iii) Completion of a post-secondary degree in a native-English speaking country or country recognized by IUPUI for TOEFL exemption within two years of enrollment date.
 3. **Personal Statement**: 300-500 words on your professional development and academic goals.
 4. **Resume/CV**: submitted to the department to account for any research experience the applicant may have.
 5. **Supplemental Question Form**: submitted to the department to gather information about research interests, academic background, program specialization interests, and recruitment purposes.
 6. **Three Letters of Recommendation**: submitted to the department by preferably faculty members who have worked directly with the applicant and can attest to his or her academic acumen.
 7. **IUPUI Online Application**, with a fee of $65.
8. **Official transcripts** sent directly to the department, and if the original document is not in English, the applicant must submit both a transcript in the original language as well as an English translation from the issuing university.

9. **Financial Statement (International applicants only):** students who are recommended for admission without financial support must submit documentation that he or she will be able to support his or her studies without university or departmental financial support.

- **Curriculum Requirements**

The minimum number of credits required to complete the Ph.D. degree is 90 credit hours, comprised of coursework and research hours (Math 69900) under the supervision of the student’s mentor. Students may choose to pursue a Ph.D. degree with a specialization in pure or applied mathematics or statistics. For students directly admitted to the Ph.D. program, the total number of credit hours will typically comprise of 90 hours of coursework (with up to 30 credit hours being applied from a M.S.) and a minimum of 18 credit hours of research.

Typically, graduate students enroll in 9 credit hours of combined coursework and research each semester. The credit hour requirements for the Ph.D. can easily be completed in 4 years; accomplishing mandated research goals usually takes longer in the mathematical sciences, with 5 years being typical. Students may also transfer in up to 30 credit hours from a M.S. degree or up to 12 graduate non-degree credit hours toward the 90 credit hours of coursework required for the Ph.D. (contingent on faculty approval). For students directly admitted to the Ph.D. program, the total number of credit hours will typically comprise of 90 hours of coursework (with up to 30 credit hours being applied from a M.S.) and a minimum of 18 credit hours of research.

Usually, graduate students enroll in 9 credit hours of combined coursework and research each semester. The credit hour requirements for the Ph.D. can easily be completed in 4 years; accomplishing mandated research goals usually takes longer in the mathematical sciences, with 5 years being typical. Students may also transfer in up to 30 credit hours from a M.S. degree or up to 12 graduate non-degree credit hours toward the 90 credit hours of coursework required for the Ph.D. (contingent on faculty approval).

- **Sample Curriculum 1– Pure Mathematics**

Four Core Math Courses:

<table>
<thead>
<tr>
<th>Course</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Complex Variables I</td>
<td>MATH 53000</td>
</tr>
<tr>
<td>Real Analysis & Measure Theory</td>
<td>MATH 54400</td>
</tr>
<tr>
<td>Abstract Algebra</td>
<td>MATH 55300</td>
</tr>
<tr>
<td>Linear Algebra</td>
<td>MATH 55400</td>
</tr>
</tbody>
</table>

Advanced Electives:

<table>
<thead>
<tr>
<th>Course</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Biomathematics</td>
<td>MATH 59800</td>
</tr>
<tr>
<td>Dynamical Systems I</td>
<td>MATH 56700</td>
</tr>
<tr>
<td>Qualitative Theory of Differential Equations</td>
<td>MATH 52200</td>
</tr>
</tbody>
</table>
Introduction to Partial Differential Equations MATH 52300
Dynamical Systems II MATH 59800
Complex Dynamics MATH 59800
Mathematical Physics I MATH 57400
Boundary Value Problems: Diff Equations MATH 52000
Mathematical Physics II MATH 67400
Elementary Topology MATH 57100

PLUS 30 Credits Applied from M.S. degree
PLUS 18 Research Credits

- **Sample Curriculum 2– Applied Mathematics**

Four Core Math Courses:

<table>
<thead>
<tr>
<th>Course</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Complex Variables I</td>
<td>MATH 53000</td>
</tr>
<tr>
<td>Real Analysis & Measure Theory</td>
<td>MATH 54400</td>
</tr>
<tr>
<td>Abstract Algebra</td>
<td>MATH 55300</td>
</tr>
<tr>
<td>Linear Algebra</td>
<td>MATH 55400</td>
</tr>
</tbody>
</table>

Advanced Electives:
Intro to Mathematical Stats STAT 52800
Numerical Analysis MATH 59800
Principles of Analysis II MATH 54500
Complex Dynamics MATH 59800
Introduction to Biomathematics MATH 59800
Fluid Structure Interaction in Hemodynamics MATH 59800

Introduction to Differential Geometry and Topology MATH 56200
Introduction to Partial Differential Equations MATH 52300
Continuum Mechanics I MATH 59800
Continuum Mechanics II MATH 59800

PLUS 30 Credits Applied from M.S. degree
PLUS 18 Research Credits

- **Sample Curriculum 3– Mathematical Statistics**

Four Core Math Courses:
Advanced Electives:
- Applied Regression Analysis
 - STAT 51200
- Design of Experiments
 - STAT 51400
- Probability Theory
 - STAT 51900
- Applied Multivariate Analysis
 - STAT 52400
- Mathematical Statistics
 - STAT 52800
- Time Series and Applications
 - STAT 52000
- Sampling and Survey Techniques
 - STAT 52200
- Categorical Data Analysis
 - STAT 52300
- Elements of Stochastic Processes
 - STAT 53200
- Introduction to Survival Analysis
 - STAT 53600

PLUS 30 Credits Applied from M.S. degree
PLUS 18 Research Credits

- **Existing Program Curriculum:**
 - *Intermediate Abstract Algebra*
 - MATH 50500
 - Vector Calculus
 - MATH 51000
 - Linear Algebra with Applications
 - MATH 51100
 - Numerical Analysis
 - MATH 51400
 - *Advanced Discrete Mathematics*
 - MATH 51800
 - Boundary Value Problems of Differential Equations
 - MATH 52000
 - Qualitative Theory of Differential Equations
 - MATH 52200
 - Introduction to Partial Differential Equations
 - MATH 52300
 - Introduction to Complex Analysis
 - MATH 52500
 - Principles of Mathematical Modeling
 - MATH 52600
 - Advanced Mathematics for Engineering and Physics II
 - MATH 52800
 - *Functions of a Complex Variable I*
 - MATH 53000
 - Functions of a Complex Variable II
 - MATH 53100
 - Theoretical Mechanics
 - MATH 53500
 - Applied Math for Scientists and Engineers I
 - MATH 53700
 - *Real Analysis and Measure Theory*
 - MATH 54400
 - Principles of Analysis II
 - MATH 54500
 - Introduction to Functional Analysis
 - MATH 54600
 - *Analysis for Teachers I*
 - MATH 54700
 - Applied Math for Secondary School Teachers
 - MATH 54900
 - Applied Computational Methods II
 - MATH 55200
<table>
<thead>
<tr>
<th>Course</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Abstract Algebra</td>
<td>MATH 55300</td>
</tr>
<tr>
<td>*Linear Algebra</td>
<td>MATH 55400</td>
</tr>
<tr>
<td>Applied Computational Methods I</td>
<td>MATH 55900</td>
</tr>
<tr>
<td>*Projective Geometry</td>
<td>MATH 56100</td>
</tr>
<tr>
<td>Introduction to Differential Geometry and Topology</td>
<td>MATH 56200</td>
</tr>
<tr>
<td>*Advanced Geometry</td>
<td>MATH 56300</td>
</tr>
<tr>
<td>Dynamical Systems I</td>
<td>MATH 56700</td>
</tr>
<tr>
<td>Elementary Topology</td>
<td>MATH 57100</td>
</tr>
<tr>
<td>Introduction to Algebraic Topology</td>
<td>MATH 57200</td>
</tr>
<tr>
<td>Mathematical Physics I</td>
<td>MATH 57400</td>
</tr>
<tr>
<td>Mathematical Modeling of Physical Systems I</td>
<td>MATH 57800</td>
</tr>
<tr>
<td>Introduction to Logic for Teachers</td>
<td>MATH 58100</td>
</tr>
<tr>
<td>History of Elementary Mathematics</td>
<td>MATH 58300</td>
</tr>
<tr>
<td>Mathematical Logic I</td>
<td>MATH 58500</td>
</tr>
<tr>
<td>General Set Theory</td>
<td>MATH 58700</td>
</tr>
<tr>
<td>Mathematical Modeling of Physical Systems II</td>
<td>MATH 58800</td>
</tr>
<tr>
<td>Topics in Mathematics</td>
<td>MATH 59800</td>
</tr>
<tr>
<td>Methods of Applied Mathematics I</td>
<td>MATH 61100</td>
</tr>
<tr>
<td>Methods of Applied Mathematics II</td>
<td>MATH 61200</td>
</tr>
<tr>
<td>Mathematical Formulation of Physical Problems I</td>
<td>MATH 62600</td>
</tr>
<tr>
<td>Mathematical Formulation of Physical Problems II</td>
<td>MATH 62700</td>
</tr>
<tr>
<td>Functional Analysis</td>
<td>MATH 64600</td>
</tr>
<tr>
<td>Dynamical Systems II</td>
<td>MATH 66700</td>
</tr>
<tr>
<td>Algebraic Topology I</td>
<td>MATH 67200</td>
</tr>
<tr>
<td>Algebraic Topology II</td>
<td>MATH 67300</td>
</tr>
<tr>
<td>Mathematical Physics II</td>
<td>MATH 67400</td>
</tr>
<tr>
<td>Topics in Applied Mathematics</td>
<td>MATH 69200</td>
</tr>
<tr>
<td>Topics in Analysis</td>
<td>MATH 69300</td>
</tr>
<tr>
<td>Topics in Differential Equations</td>
<td>MATH 69400</td>
</tr>
<tr>
<td>Topics in Topology</td>
<td>MATH 69700</td>
</tr>
<tr>
<td>Research Ph.D. Thesis</td>
<td>MATH 69900</td>
</tr>
<tr>
<td>Statistical Methods I</td>
<td>STAT 51100</td>
</tr>
<tr>
<td>*Applied Regression Analysis</td>
<td>STAT 51200</td>
</tr>
<tr>
<td>Statistical Quality Control</td>
<td>STAT 51300</td>
</tr>
<tr>
<td>*Design of Experiments</td>
<td>STAT 51400</td>
</tr>
<tr>
<td>Statistical Consulting Problems 1-3</td>
<td>STAT 51500</td>
</tr>
<tr>
<td>*Basic Probability and Applications</td>
<td>STAT 51600</td>
</tr>
<tr>
<td>*Statistical Inference</td>
<td>STAT 51700</td>
</tr>
<tr>
<td>Introduction to Probability</td>
<td>STAT 51900</td>
</tr>
</tbody>
</table>
*Probability Theory STAT 51900 (MATH 51900)
Time Series and Applications STAT 52000
Statistical Computing STAT 52100
Sampling and Survey Techniques STAT 52200
Categorical Data Analysis STAT 52300
*Applied Multivariate Analysis STAT 52400
Generalized Linear Models STAT 52501
*Mathematical Statistics STAT 52800
Applied Decision Theory and Bayesian Analysis STAT 52900
Elements of Stochastic Processes STAT 53200 (MATH 53200)
Nonparametric Statistics STAT 53300
Introduction to Survival Analysis STAT 53600
Probability Theory STAT 61900
Research M.S. Thesis STAT 69800

*Denotes Core Courses for Pure and Applied Mathematics, Statistics and Math Education tracks.
Appendix B: Faculty: Areas of Specialization

Julia Arciero, PhD, Assistant Professor; Applied Mathematics, Mathematical Biology

P Bleher, PhD, Chancellor Professor; Mathematical Physics, Statistical Physics, Probability Theory, Random Matrix Models, Quantum Mechanics and Quantum Chaos, Random Polynomials, Renormalization Group, Critical Phenomena and Phase Transitions, Lattice Point Problems, Semiclassical Asymptotics

Benzion Boukai, PhD, Professor; Mathematical Statistics and Applications

Olguta Buse, PhD, Associate Professor; Symplectic and Contact Geometry, Topology

Clyde D Counts, MA, Lecturer; Mathematics

Carl Cowen, PhD, Professor; Operator Theory, Complex Analysis, Linear Algebra

Christopher Dona, MS, Lecturer; Finite Mathematics, Probability Theory, Mathematics Education

G Duane Farris, MS, Lecturer; Mathematics

Patrick Frey, MS, Lecturer; Mathematics

William Geller, PhD, Associate Professor; Dynamical Systems, Game Theory

Giovanna Guidoboni, PhD, Associate Professor; Applied Mathematics, Continuum Mechanics, Mathematical Biology

Henry Hernandez, MS, Lecturer; Mathematics

Clay Hicks, MS, Lecturer; Mathematics

Alexander Its, PhD, Distinguished Professor; Mathematical Physics

Elizabeth Its, PhD, Research Associate Professor; Applied Mathematics

Ronghui Ji, PhD, Associate Professor; Mathematics

Bruce Kitchens, PhD, Associate Professor; Dynamical Systems and Ergodic Theory

Nancy Kitt, MA, Lecturer; Mathematics Education, Developmental Mathematics Courses

Slawomir Klimek, PhD, Associate Professor; Mathematical Physics, Noncommutative Geometry, Number Theory

Alexey Kuznetsov, PhD, Associate Professor; Applied Mathematics
Fang Li, PhD, Associate Professor; Statistics

Judy McBride, MS, Senior Lecturer; Mathematics Education

Bryan Melsheimer, MS, Full-Time Lecturer; Pre-Calculus

Susan Meshulam, MS, Senior Lecturer; Mathematics

John L Miller, PhD, Lecturer; Mathematics

Michal Misiurewicz, PhD, Professor; Dynamical Systems, Ergodic Theory

Yaroslav Molkov, PhD, Assistant Professor; Applied Mathematics

R Patrick Morton, PhD, Professor; Number Theory, Algebra, Geometry

Evgeny Mukhin, PhD, Professor; Mathematics, Mathematical Physics

Hanxiang Peng, PhD, Associate Professor; Statistics

Rodrigo Perez, PhD, Associate Professor; Dynamical Systems; in particular 1- and 2-dimensional Complex Dynamics, Geometric Group Theory, Combinatorics

Joan Rainey, MA, Lecturer; Mathematics

Daniel Ramras, PhD, Assistant Professor; Mathematics

Sharon Rangazas, MA, Senior Lecturer; Mathematics

Mamunur Rashid, PhD, Lecturer; Statistics, Logistic Regression, Statistical Inference

Roland Roeder, PhD, Assistant Professor; Dynamical Systems, Complex Analysis, Hyperbolic Geometry

Leonid Rubchinsky, PhD, Associate Professor; Mathematical Biology, Computational Neuroscience, Dynamical Systems

Jyotirmoy Sarkar, PhD, Professor; Statistics, Probability, Economics

Asok K Sen, PhD, Professor; Mathematics

Zhongmin Shen, PhD, Professor; Mathematics

Richard Tam, PhD, Associate Professor; Applied Mathematics, Combustion Theory

Fei Tan, PhD, Assistant Professor; Biostatistics, Statistics, Public Health

Vitaly Tarasov, PhD, Professor; Statistics, Probability, Economics
Jeffrey Xavier Watt, PhD, Associate Professor; Mathematics Education

Maxim Yattselev, PhD, Assistant Professor; Mathematics

Wei Zheng, PhD, Assistant Professor; Statistics, Design of Experiments

Luoding Zhu, PhD, Associate Professor; Blood Flows, Numerical Methods, Scientific Computing
Appendix C: History and size of the IUPUI Mathematical Sciences Ph.D. degree program.

The first student, completed Ph.D. thesis under the direction of a Mathematical Sciences faculty member in Indianapolis in 1986 (Ellen Maycock Parker), she finished her course work on the West Lafayette campus.

The first Ph.D. student graduated from the Department in 1993 (Vic Perera), who received his full training, including all course work, in Indianapolis.

In the next years, the Department produced Ph.D. graduates as shown in the table:

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2003</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2004</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

In year 2013, there were five Ph.D. graduates.

That makes a total of 27 Ph.D. Mathematics graduates from the Department of Mathematical Sciences at IUPUI up to this point. Each received a Purdue University Ph.D. in Mathematics awarded at West Lafayette.

The current plan is to graduate five to seven students per year on regular basis. In fall 2015, there will be 40 Ph.D. students, 36 of whom will receive financial support from the Department (both TA and Fellowships). Among them, eight are domestic students, 10 are female students.

The students are able to choose emphasis areas in Pure Mathematics, Applied Mathematics or Mathematical Statistics

a) Pure Mathematics area has 19 students, nine of them completed the qualifying exams.

b) Applied Mathematics area has eight students, six passed the qualifying exams. This area is being actively developed with the recent hiring of several new faculty. In particular, we started the qualifying exam in Numerical Analysis and are working on adding several graduate courses in applied mathematics.

c) Mathematical Statistics has nine students, four passed the qualifying exams. This is a new area which was approved by Purdue only in 2009, and first two students are expected to graduate in May 2015. The students in this area are required to take two core mathematical exams (typically, Real Analysis and Linear Algebra) and two subject exams: Probability and Mathematical Statistics. The other requirements to complete the program are the same as for Ph.D. students with concentrations in pure and applied mathematics.

The next chart shows progress in the program of each matriculated student up to year 2012.
Data on Ph.D. Graduates

Below is a list of Ph.D. graduates since 2006 along with their dissertation topic, faculty advisor, and career information. Our faculty play a major role in supporting our students to help them reach their academic and career goals.

A. Harsy
2014; Locally compact property A groups; Advisor: R. Ji; First Position: Assistant Professor, Lewis University, Romeoville, IL

Q. Lin
2013; A jackknife empirical likelihood approach to goodness of fit u-statistic testing with side information; Advisor: H. Peng; First Position: Consultant Statistician, Eli Lilly and Company, Indianapolis, IN

T. Bothner
2013; Asymptotics of the Fredholm determinant corresponding to the first bulk critical universality class in random matrix models; Advisor: A. Its; First Position: CRM-ISM Postdoctoral Fellow, Centre de Recherches Mathematiques (CRM), Universite de Montreal, Montreal, Quebec, Canada

J. Carter
2013; Commutants of composition operators on the Hardy space of the disk; Advisor: C. Cowen; First Position: Knowledge Engineer, Ke Labs, Inc., Carmel, IN

S. Kaschner
2013; Superstable manifolds of invariant circles and codimension-1 Bottcher functions; Advisor: R. Roeder; First Position: Teaching Postdoc, University of Arizona, Tucson, AZ

D. Thompson
2013; Restrictions to invariant subspaces of composition operators on the Hardy space of the disk; Advisor: C. Cowen; First position: Assistant Professor, Trine University, Angola, IN; Current position: Assistant Professor of Mathematics, Taylor University, Upland, IN

S. Chamblee
2012; Dynamics of twisted tent maps; Advisor: M. Misiurewicz; First position: Junior Actuary, Indiana Department of Insurance, Indianapolis, IN

A. Dovzhenok
2012; Mathematical models of basal ganglia dynamics; Advisor: L. Rubchinsky; First position: Postdoctoral Fellow, University of Cincinnati, Cincinnati, OH

M. McBride
2012; D-bar and Dirac operators on classical and quantum domains; Advisor: S. Klimek; First position: Visiting Assistant Professor of Mathematics, University of Oklahoma, Norman, OK
K. Liechty
2010; Exact solutions to the six-vertex model with domain wall boundary conditions and uniform asymptotics of discrete orthogonal polynomials on an infinite lattice; Advisor: P. Bleher; First position: Postdoctoral Assistant Professor, University of Michigan, Ann Arbor, MI; Current position: Assistant Professor, DePaul University, Chicago, IL

B. Bieth
2009; Developing fast and accurate parallel solver for multi-scales biochemical reacting systems; Advisor: R. Chin; First position: Modeler, Novartis Pharma AG, Basel, Switzerland

R. Hemphill
2009; Robust equilibria: normal-form, extensive-form, and repeated games; Advisor: W. Geller; First position: Actuarial Consultant, Timmerberg and Associates, Indianapolis, IN; Current position: Senior Actuary, California Department of Insurance, Los Angeles, CA

L. Hong
2009; Limiting performance of a one-unit system under various repair models; Advisor: J. Sarkar; First position: Assistant Professor of Mathematics and Actuarial Science, Bradley University, Peoria, IL; Current position: Assistant Professor of Mathematics & Actuarial Science, Robert Morris University, Pittsburgh, PA

D. Niles
2009; Riemann-Hilbert-Birkhoff inverse monodromy problem and connection formulae for the third Painleve transcendent; Advisor: A. Its; First position: Postdoctoral Fellow, IUPUI, IN

B. Ramsey
2008; A generalization of the Lyndon-Hochschild-Serre spectral sequence for polynomial cohomology.; Advisor: R. Ji; First position: Postdoctoral Fellow, IUPUI, IN; Current position: Ross Assistant Professor, The Ohio State University, Columbus, OH

B. Mallison
2007; Zeros of sections of exponential sums; Advisor: P. Bleher, First position: Assistant Professor, Indiana Wesleyan University, IN; Current position: Associate Professor, Indiana Wesleyan University, IN
May 20, 2015

The Graduate School
Purdue University
West Lafayette, IN 47907

To whom it may concern:

I am writing to support the proposal of the Department of Mathematical Sciences at Indiana University-Purdue University at Indianapolis (IUPUI) to have independent administration of its PhD. I understand that this degree would be a University of Purdue PhD degree awarded at IUPUI.

The Department of Mathematical Sciences at IUPUI is a diverse and active department whose faculty members produce quality research in pure mathematics, applied mathematics, statistics and biostatistics, and mathematics education. The faculty includes many scholars with both national and international reputations. Besides pure mathematicians working in areas such as dynamical systems, mathematical physics, and blends of algebra with topology, the Department has applied mathematicians and statisticians working on health data sciences and biomathematics modeling. Much of this work is in collaboration with faculty members at Indiana University and Purdue University.

I understand that the PhD program in the Department of Mathematical Sciences at IUPUI has functioned for over 20 years through Memorandums of Understanding (MOU) between the Department of Mathematical Sciences at IUPUI and the Department of Mathematics at Purdue University. The program at IUPUI has been a very successful program, producing many graduates who have gone on to worthwhile professional careers in academics, public service, and the private sector.

It is in the best interests of the State of Indiana to grant the request from the Department of Mathematical Sciences at IUPUI for independent control of its PhD program. With its location in Indianapolis and proximity to the Medical School, the Department of Mathematical Sciences at IUPUI plays a unique role in mathematics education and training in the State of Indiana, creating a highly trained and knowledgeable scientific workforce that bolsters Indiana’s competitiveness. Autonomy of the PhD program will enhance the department’s ability to meet the ever changing needs of its own, unique community of scholars.

Sincerely,

[Signature]

Elizabeth Housworth, Chair
August 28, 2015

The Department of Mathematical Sciences of Indiana University-Purdue University at Indianapolis (IUPUI) seeks to have independent administration of its PhD program and hence to have the authority to confer a Purdue University PhD degree awarded at IUPUI. We write to support this proposal.

The Department of Mathematical Sciences at IUPUI is a diverse and active department whose faculty members produce quality research in pure mathematics, applied mathematics, statistics and biostatistics, and mathematics education. The faculty includes many scholars with both national and international reputations for the depth and breadth of their research. Besides pure mathematicians working in areas such as dynamical systems, mathematical physics, and blends of algebra with topology, the Department has applied mathematicians and statisticians working on health data sciences and biomathematics modeling. Much of this work is in collaboration with faculty members at Indiana University and Purdue University.

The PhD program in the Department of Mathematical Sciences at IUPUI has functioned for over 20 years through Memoranda of Understanding (MOU) between the Department of Mathematical Sciences at IUPUI and the Department of Mathematics at Purdue University. This has been a very successful program, producing many graduates who have gone on to worthwhile professional careers in academics, public service, and the private sector.

Based on our experience and the approval of the Graduate Committee of the Purdue University Department of Mathematics, we believe it is in the best interests of the State of Indiana to grant the request from the Department of Mathematical Sciences at IUPUI to have fully independent control of its PhD program. The demand for well-trained professionals at the PhD level in the STEM disciplines has never been higher. Granting this request will help Indiana meet this demand and continue, in this way, to address the challenges our state faces in creating a highly trained and knowledgeable scientific workforce.

Sincerely,

Gregory T. Buzzard
Professor and Head

David Goldberg
Professor and Associate Head for Graduate Studies
May 11, 2015

Simon J. Rhodes, Ph.D.
Dean, School of Science
IUPUI
402 North Blackford Street, LD 222
Indianapolis, IN 46202

Dear Dr. Rhodes,

I am pleased to offer my support for your proposals for independent Ph.D. degrees in the School of Science at IUPUI. My colleagues at Lilly and I have been pleased to witness the emergence of the School of Science as an excellent research and learning institution and key asset in our shared ambition to make Indiana a hub of discovery and innovation. IUPUI graduates of the current Ph.D. programs awarded through the West Lafayette campus hold important positions in both our research laboratories and in other areas of our company. We have benefitted from the outstanding training they received. Clearly, you are ready to operate your own Ph.D. programs.

We have been particularly pleased with the benefits to our employees who have taken advantage of the opportunity to enhance their qualifications and contributions to our discovery mission by studying for the Ph.D. through the I.GRAD program that we developed together. They are well prepared to assume higher levels of responsibility in their research groups. Moreover, this training is beneficial to the company as we seek to develop our own scientists as leaders in their fields of inquiry and to retain the best and brightest.

We also realize that your undergraduate degree students (the vast majority of whom are from Indiana) enjoy opportunities to have significant engagements in research. These research experiences help develop important skills that Indiana employers seek in new hires. Enriching the research environment by solidifying the Ph.D. degree programs will further improve the education and preparation of your undergraduates.

I believe that approval of the independent status you are requesting will strengthen your programs even further by allowing them to participate in national rankings and by making them fully eligible for external funding programs that are restricted to those with independent doctoral degrees. All of us in Indiana’s life sciences community, and other contributors to our economy and quality of life, will share the benefits.

Sincerely,

[Signature]

John C. Lechleiter, Ph.D.
Chairman, President, and Chief Executive Officer
317.276.6997 | jcl@lilly.com

Eli Lilly and Company
Lilly Corporate Center
Indianapolis, Indiana 46285
U.S.A.
www.lilly.com
Appendix E: Headcounts and Cost Projections

Indiana University-Purdue University Indianapolis

Ph. D. in Mathematical Sciences

Headcount Enrollment

<table>
<thead>
<tr>
<th>New HC Res</th>
<th>Total Credit Hours/head</th>
<th>Total Credit Hours</th>
<th>FTE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Year 1</td>
<td>Year 2</td>
<td>Year 3</td>
</tr>
<tr>
<td>FT</td>
<td>1 1 1 1</td>
<td>18 18 18 18</td>
<td>18 18 18 18</td>
</tr>
<tr>
<td></td>
<td>2 1 1 1</td>
<td>18 18 18 18</td>
<td>- 18 18 18</td>
</tr>
<tr>
<td></td>
<td>3 1 1 1</td>
<td>18 18 18 18</td>
<td>- - 18 18</td>
</tr>
<tr>
<td></td>
<td>4 1 1 1</td>
<td>18 18 18 18</td>
<td>- - 18 18</td>
</tr>
<tr>
<td></td>
<td>5 1 1 1</td>
<td>18 18 18 18</td>
<td>- - 18 18</td>
</tr>
<tr>
<td>PT</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
</tr>
<tr>
<td></td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
</tr>
<tr>
<td></td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
</tr>
<tr>
<td></td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
</tr>
<tr>
<td></td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
</tr>
<tr>
<td>Nres</td>
<td>FT</td>
<td>2 2 2 2</td>
<td>18 18 18 18</td>
</tr>
<tr>
<td></td>
<td>2 2 2 2</td>
<td>18 18 18 18</td>
<td>- 36 36 36</td>
</tr>
<tr>
<td></td>
<td>3 2 2 2</td>
<td>18 18 18 18</td>
<td>- 36 36 36</td>
</tr>
<tr>
<td></td>
<td>4 2 2 2</td>
<td>18 18 18 18</td>
<td>- - 36 36</td>
</tr>
<tr>
<td></td>
<td>5 2 2 2</td>
<td>18 18 18 18</td>
<td>- - 36 36</td>
</tr>
<tr>
<td>PT</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
</tr>
<tr>
<td></td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
</tr>
<tr>
<td></td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
</tr>
<tr>
<td></td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
</tr>
<tr>
<td></td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
</tr>
<tr>
<td>Trf HC Res</td>
<td>FT</td>
<td>2 2 2 2</td>
<td>18 18 18 18</td>
</tr>
<tr>
<td></td>
<td>2 2 2 2</td>
<td>18 18 18 18</td>
<td>- 36 36 36</td>
</tr>
<tr>
<td></td>
<td>3 2 2 2</td>
<td>18 18 18 18</td>
<td>- 36 36 36</td>
</tr>
<tr>
<td></td>
<td>4 2 2 2</td>
<td>18 18 18 18</td>
<td>- - 36 36</td>
</tr>
<tr>
<td></td>
<td>5 2 2 2</td>
<td>18 18 18 18</td>
<td>- - 36 36</td>
</tr>
<tr>
<td>PT</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
</tr>
<tr>
<td></td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
</tr>
<tr>
<td></td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
</tr>
<tr>
<td></td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
</tr>
<tr>
<td></td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
</tr>
<tr>
<td>Nres</td>
<td>FT</td>
<td>6 6 6 6</td>
<td>18 18 18 18</td>
</tr>
<tr>
<td></td>
<td>2 6 6 6</td>
<td>18 18 18 18</td>
<td>108 108 108 108</td>
</tr>
<tr>
<td></td>
<td>3 6 6 6</td>
<td>18 18 18 18</td>
<td>108 108 108 108</td>
</tr>
<tr>
<td></td>
<td>4 6 6 6</td>
<td>18 18 18 18</td>
<td>108 108 108 108</td>
</tr>
<tr>
<td></td>
<td>5 6 6 6</td>
<td>18 18 18 18</td>
<td>108 108 108 108</td>
</tr>
<tr>
<td>PT</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
</tr>
<tr>
<td></td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
</tr>
<tr>
<td></td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
</tr>
<tr>
<td></td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
</tr>
<tr>
<td></td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
</tr>
</tbody>
</table>

Total

<table>
<thead>
<tr>
<th>Total</th>
<th>11 22 33 44 55</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>198 396 594 792 990</td>
</tr>
<tr>
<td></td>
<td>6.25 19.50 24.75 33.00 41.25</td>
</tr>
</tbody>
</table>

or hr per FTE: 24

Res

<table>
<thead>
<tr>
<th>Res</th>
<th>3 8 9 12 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nres</td>
<td>8 15 24 32 40</td>
</tr>
<tr>
<td></td>
<td>144 298 452 576 720</td>
</tr>
<tr>
<td></td>
<td>6.00 12.00 18.00 24.00 30.00</td>
</tr>
</tbody>
</table>

FT

<table>
<thead>
<tr>
<th>FT</th>
<th>11 22 33 44 55</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100 200 304 402 592</td>
</tr>
<tr>
<td></td>
<td>0.26 1.50 2.25 3.00 3.75</td>
</tr>
<tr>
<td></td>
<td>0.00 0.00 0.00 0.00 0.00</td>
</tr>
</tbody>
</table>

PT

<table>
<thead>
<tr>
<th>PT</th>
<th>- - - -</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>54 108 162 216 270</td>
</tr>
<tr>
<td></td>
<td>2.25 4.50 6.75 9.00 11.25</td>
</tr>
</tbody>
</table>

New

<table>
<thead>
<tr>
<th>New</th>
<th>4 6 9 12 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Res</td>
<td>1 2 3 4 5</td>
</tr>
<tr>
<td>Nres</td>
<td>2 4 6 8 10</td>
</tr>
<tr>
<td></td>
<td>56 72 108 144 180</td>
</tr>
<tr>
<td></td>
<td>1.50 3.00 4.50 6.00 7.50</td>
</tr>
</tbody>
</table>

Tmkr

<table>
<thead>
<tr>
<th>Tmkr</th>
<th>8 15 24 32 40</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>144 298 452 576 720</td>
</tr>
<tr>
<td></td>
<td>6.00 12.00 18.00 24.00 30.00</td>
</tr>
</tbody>
</table>

Nres

<table>
<thead>
<tr>
<th>Nres</th>
<th>6 12 18 24 30</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>108 216 324 432 540</td>
</tr>
<tr>
<td></td>
<td>4.50 9.00 13.50 18.00 22.50</td>
</tr>
</tbody>
</table>

GRADS

| If 4-yr | - - - - 11 |

6/24/2015
NEW ACADEMIC DEGREE PROGRAM PROPOSAL SUMMARY

Institution/Location: Indiana University-Purdue University Indianapolis
Program: Ph. D. in Mathematical Sciences
Proposed CIP Code: 27.0101
Base Budget Year: 2014-15

<table>
<thead>
<tr>
<th></th>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
<th>Year 4</th>
<th>Year 5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2016-17</td>
<td>2017-18</td>
<td>2018-19</td>
<td>2019-20</td>
<td>2020-21</td>
</tr>
<tr>
<td>Enrollment Projections (Headcount)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PhD Program</td>
<td>11</td>
<td>22</td>
<td>33</td>
<td>44</td>
<td>55</td>
</tr>
<tr>
<td>Master of Arts Program</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>11</td>
<td>22</td>
<td>33</td>
<td>44</td>
<td>55</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
<th>Year 4</th>
<th>Year 5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2016-17</td>
<td>2017-18</td>
<td>2018-19</td>
<td>2019-20</td>
<td>2020-21</td>
</tr>
<tr>
<td>Enrollment Projections (FTE)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PhD Program</td>
<td>8</td>
<td>17</td>
<td>25</td>
<td>33</td>
<td>41</td>
</tr>
<tr>
<td>Master of Arts Program</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>8</td>
<td>17</td>
<td>25</td>
<td>33</td>
<td>41</td>
</tr>
</tbody>
</table>

Degree Completion Projection

- - - - 11

CHE Code:
Campus Code:
County Code:
Degree Level:
CIP Code:
<table>
<thead>
<tr>
<th>Personnel Services</th>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
<th>Year 4</th>
<th>Year 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faculty</td>
<td>0.8 FTE</td>
<td>$72,000</td>
<td>1.6 FTE</td>
<td>$144,000</td>
<td>2.3 FTE</td>
</tr>
<tr>
<td>Staff</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Graduate Assistants</td>
<td>1.5 FTE</td>
<td>$69,000</td>
<td>3.0 FTE</td>
<td>$138,000</td>
<td>4.5 FTE</td>
</tr>
<tr>
<td>Total Personnel Services</td>
<td>$141,000</td>
<td>$282,000</td>
<td>$414,000</td>
<td>$564,000</td>
<td>$705,000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Supplies and Expense</th>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
<th>Year 4</th>
<th>Year 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Supplies and Expense</td>
<td>$64,800</td>
<td>$129,600</td>
<td>$183,600</td>
<td>$248,400</td>
<td>$313,200</td>
</tr>
<tr>
<td>Recruiting</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Travel</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Library</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total Supplies and Expense</td>
<td>$64,800</td>
<td>$129,600</td>
<td>$183,600</td>
<td>$248,400</td>
<td>$313,200</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
<th>Year 4</th>
<th>Year 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Equipment (see narrative)</td>
<td>$ -</td>
<td>$ -</td>
<td>$ -</td>
<td>$ -</td>
<td>$ -</td>
</tr>
<tr>
<td>Equipment Replacement</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total Equipment</td>
<td>$ -</td>
<td>$ -</td>
<td>$ -</td>
<td>$ -</td>
<td>$ -</td>
</tr>
<tr>
<td>Facilities (see narrative)</td>
<td>$ -</td>
<td>$ -</td>
<td>$ -</td>
<td>$ -</td>
<td>$ -</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Student Assistance</th>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
<th>Year 4</th>
<th>Year 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graduate Fee Scholarships</td>
<td>$39,600</td>
<td>$79,200</td>
<td>$118,800</td>
<td>$158,400</td>
<td>$198,000</td>
</tr>
<tr>
<td>Fellowships</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total Student Assistance</td>
<td>$39,600</td>
<td>$79,200</td>
<td>$118,800</td>
<td>$158,400</td>
<td>$198,000</td>
</tr>
<tr>
<td>Total Costs</td>
<td>$245,400</td>
<td>$490,800</td>
<td>$716,400</td>
<td>$970,800</td>
<td>$1,216,200</td>
</tr>
</tbody>
</table>